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Multi-BOWS: Multi-Fidelity Multi-Objective Bayesian
Optimization with Warm Starts for Nanophotonic Struc-
ture Design†

Jungtaek Kim,a Mingxuan Li,a Yirong Li,a Andrés Gómez,b Oliver Hinder,a and Paul W.
Leu∗a

The design of optical devices is a complex and time-consuming process. To simplify this process,
we present a novel framework of Multi-fidelity multi-objective Bayesian Optimization with Warm
Starts, called Multi-BOWS. This approach automatically discovers new nanophotonic structures by
managing multiple competing objectives and utilizing multi-fidelity evaluations during the design
process. We employ our Multi-BOWS method to design an optical device specifically for trans-
parent electromagnetic shielding, a challenge that demands balancing visible light transparency and
effective protection against electromagnetic waves. Our approach leverages the understanding that
simulations with a coarser mesh grid are faster, albeit less accurate than those using a denser mesh
grid. Unlike the earlier multi-fidelity multi-objective method, Multi-BOWS begins with faster, less
accurate evaluations, which we refer to as “warm-starting,” before shifting to a dense mesh grid to
increase accuracy. As a result, Multi-BOWS demonstrates 3.2-89.9% larger normalized area under
the Pareto frontier, which measures a balance between transparency and shielding effectiveness, than
low-fidelity only and high-fidelity only techniques for the nanophotonic structures studied in this work.
Moreover, our method outperforms the existing multi-fidelity method by showing 0.5-10.3% larger
normalized area under the Pareto frontier for the structures of interest.

Introduction
Electrodynamic simulations play an essential role in the design of
optical devices for a range of applications, including waveguides,
photonic crystals, lenses, plasmonics, solar cells, and nanopho-
tonics1–3. These simulations involve solving Maxwell’s equations
to examine the interaction of electromagnetic waves with differ-
ent materials and structures. This process allows us to compute
various optical properties and understand how to control light,
which are relevant for optical devices. However, there are several
challenges associated with the design of optical devices. These
include the definition of parameters to optimize, the multiple ob-
jectives that need to be considered, and the balance between eval-
uation time and accuracy.

Designing an optical device requires defining a parametric de-
sign space for these devices and identify specific objective func-
tions to optimize. However, the design process of an optical de-
vice can be complex due to the need to balance several distinct

a University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA. E-mail:
pleu@pitt.edu
b University of Southern California, Los Angeles, California 90089, USA.
† Electronic Supplementary Information (ESI) available. See DOI:
00.0000/00000000.

competing objectives over many parameters. For instance, in lens
design, factors such as resolution, wavelength range, and field
angles need to be considered4. Antireflection coating design re-
quires the minimization of reflection at multiple wavelengths and
angles5,6. For light emitting diodes, considerations include effi-
ciency, color rendering, lifetime, and thermal management7.

We can use one of several electrodynamic methods, such as rig-
orous coupled-wave analysis8, finite element method9, or finite-
difference time-domain method10, to simulate an optical device.
Interestingly, these simulation methods involve different levels of
fidelity, such as mesh resolution, frequency domain decomposi-
tion, and time step. Different nanophotonic structures can be
evaluated at lower fidelity, which is less expensive but more prone
to noise, or at higher fidelity, which is costlier but yields more ac-
curate results. Both low-fidelity and high-fidelity evaluations are
valuable due to their unique properties related to accuracy and
time efficiency.

To efficiently design an optimal optical device, we propose a
framework of Multi-fidelity multi-objective Bayesian Optimiza-
tion with Warm Starts, called Multi-BOWS. This framework com-
bines multiple objectives and multi-fidelity evaluations in the
design process of optical devices with electrodynamic simula-
tions. We utilize Bayesian optimization11–13, a sample-efficient
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technique for black-box optimization, which has been shown to
effectively automate structure discovery14–24. This automatic
discovery process allows us to investigate a high-dimensional
search space of disparate nanophotonic structures, reducing hu-
man intervention in the design process. Specifically, we use the
Pareto frontier of low-fidelity evaluations to kick-start the high-
fidelity Bayesian optimization by providing better initial points
and thereby accelerating the optimization process.

We demonstrate the effectiveness of our Multi-BOWS method
in the specific context of designing optical devices for transpar-
ent electromagnetic shielding. This requires a structure with high
visible transparency and efficient electromagnetic shielding. Our
findings show that Multi-BOWS outperforms several approaches
that use low-fidelity evaluations only, high-fidelity evaluations
only, or a multi-fidelity approach that uses a mix of both25. In
particular, our method achieves 3.2-89.9% larger normalized area
under the Pareto frontier (AUPF) than the low-fidelity only and
high-fidelity only techniques for the nanophotonic structures in-
vestigated in our work. Moreover, it achieves 0.5-10.3% larger
AUPF than the earlier multi-fidelity method for the structures
studied in this work.

Preliminaries
In this section, we delve into the challenges of optical device de-
sign for transparent electromagnetic shielding. Then, we dis-
cuss the nanophotonic structures under consideration and the
Bayesian optimization strategy that will be used to discover novel
structures.

Electromagnetic shielding is crucial for safeguarding elec-
tronic devices and circuits by mitigating electromagnetic interfer-
ence26–31. This has been a major research focus for a variety of
applications such as protecting RFID chips from radio-frequency
interference and shielding medical implants from electromagnetic
waves. Besides reducing interference, some applications such as
consumer electronics, automotive and aviation, medical devices,
and building windows need to fulfill additional design objectives
like visible transparency. The simultaneous consideration of sev-
eral different factors complicates the task of identifying the most
effective structure.

Formally, suppose that we have an objective for transparency,
denoted as ftr, and another for shielding effectiveness (SE), de-
noted as fse. An optimal structure for transparency x⋆tr and one
for SE x⋆se can be defined by solving the following equations:

x⋆tr = argmax
x∈X

ftr(x), (1)

x⋆se = argmax
x∈X

fse(x), (2)

where x represents a nanophotonic structure and X is the search
space for optical device design. It is important to consider the
trade-off between these two objectives – we want to devise a
nanophotonic structure that maximizes both ftr and fse 29,32.
However, optimizing both Eqs. (1) and (2) is a complex task as
the optimal solutions x⋆tr and x⋆se are not likely to coincide.

In addition to the aforementioned complexities of multi-

objective optimization, a specific expression of ftr cannot be ex-
plicitly obtained for many structures and require electrodynamic
simulations. Simulating a nanophotonic structure to evaluate ftr
is a time-consuming task because an accurate evaluation requires
a dense mesh grid. These challenges make a compelling case
for employing a black-box optimization technique for a costly
function. Notably, Bayesian optimization is a sample-efficient
black-box optimization strategy that stands as a suitable candi-
date to tackle this problem11–13. Furthermore, by utilizing the
nature of mesh-based simulations, we can evaluate less expen-
sive, albeit noisier functions using a coarse mesh grid, rather
than more expensive but more accurate functions using a dense
mesh grid. Hence, we can define a low-fidelity multi-objective
function [ f low

tr , f low
se ] and a high-fidelity multi-objective function

[ f high
tr , f high

se ]. These functions, with varying degree of accuracy,
help us to select an optimal structure concerning both objectives
from a multi-fidelity optimization standpoint. This approach al-
lows us to strike a balance between evaluation accuracy and time.

Nanophotonic Structures for Transparent Electromagnetic
Shielding

Transparent electromagnetic shielding, which allows for efficient
transmission of visible light, is crucial for various optoelectronic
applications. Metal meshes have been widely explored in the pur-
suit of high transparency and low sheet resistance, which is the
essential for electromagnetic shielding31. Meanwhile, to enhance
the visible transmission of silver films, many researchers have in-
vestigated the encapsulation of the silver layer with high-index
dielectric materials. ITO/Ag-Cu/ITO structures have achieved
96.5% transmittance and 26 dB SE29, while ZnO/Ag/ZnO sand-
wich structures have shown 88.9% transmittance in the visible
range and 35 dB SE33. Furthermore, to improve the perfor-
mance of sandwich structures, nanocone structures have been
proposed. These structures enhance the antireflection effect by
using a graded refractive index. Double-sided nanocone sand-
wiches demonstrate 90.8% average visible transmittance with
41.2 dB SE and 95.1% average visible transmittance with 35.6
dB SE32. Suggestions have been made to explore different cone
geometries to break traditional performance limits and to under-
stand the fabrication sensitivity of these structures better34–37. It
is noteworthy that these nanocone structures could be fabricated
by maskless reactive ion etching5,6,38 or nanosphere lithography
combined with etching39. However, designing nanocone struc-
tures introduce the need to optimize over many parameters, ne-
cessitating a large number of structure evaluations.

Automatic Structure Discovery

Automatic structure discovery, which is the pursuit of an opti-
mal structure, has been actively studied in diverse research fields.
These include protein structure discovery19,20, drug discovery21,
neural architecture search22,23, and causal discovery24,40,41. All
these problems share the challenge of seeking optimal outcomes
in a vast landscape of possible structures, akin to finding a needle
in a haystack.

To overcome this challenge, it is necessary to define three key
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elements:

• structure representation: this is the process of expressing
a structure of interest as a specific type of input, such as
discrete variables,

• evaluation function: this is used to assess the performance
of a particular structure, and

• decision-making policy: this is a strategy used to identify
potential optimal structures based on previously evaluated
structures and their corresponding evaluations.

In this paper, we carefully design structure representations, taking
into account the structures described in this section. and the feasi-
bility of structures. The evaluation function is then defined based
on the structure representation to measure specific properties.
In this paper our framework considers the multiple objectives
of transparency and SE. Moreover, this evaluation function of
transparency is inherently black-box, as it cannot be explicitly ex-
pressed as a function. Lastly, the decision-making process, which
incorporates both the structure representation and the evaluation
function, recommends optimal structure candidates sequentially.

On the other hand, topology optimization can be employed in
the design of photonic structures, which leverages gradient infor-
mation with respect to these structures42–44. Previous research
has shown that combining adjoint methods with topology opti-
mization is a powerful approach for tackling inverse design prob-
lems in photonics45–48. These methods are reliant on gradients
and typically use gradient-based optimization techniques to find
solutions. However, these approaches may be limited when ob-
jective functions are complex and it is important to find a global
optimum as opposed to local optima.

Bayesian Optimization
Bayesian optimization11–13 has been reported in various studies
as a powerful method for identifying optimal solutions for black-
box functions49–51 where evaluations are costly14–18,49–53. It is
important to note that the efficacy of this method may diminish
as the number of parameters increases and managing a surro-
gate model becomes increasingly complex. However, Bayesian
optimization has been shown to perform well compared to other
competitors for black-box optimization, such as DIRECT and evo-
lutionary algorithms54–57.

Its strengths have been validated in attractive real-world prob-
lems, including optimizing chemical reactions18, battery charging
protocols16, automatic chemical design17, and automated ma-
chine learning52,53. Building on this work, Bayesian optimiza-
tion is particularly well-suited for optimizing nanophotonic struc-
tures where a structure representation and evaluation functions
are already provided. Specifically, it excels in optimizing objec-
tives when categorical and discrete variables are present51,58,59.

Suppose that we do not know an objective function f and can
only evaluate a d-dimensional query point x ∈ X from f , where
X is a d-dimensional search space, i.e., typically a hypercube.
Bayesian optimization sequentially optimizes f by selecting a so-
lution candidate at each iteration. Initially, we construct a surro-
gate function, often using probabilistic regression, based on the

Fig. 1 Schematics of nanophotonic structures studied. Each structure
is composed of silver (Ag, represented by white) and titanium dioxide
(TiO2, shown in dark blue).

points already evaluated and their evaluations. Gaussian pro-
cess regression is a popular surrogate function in the Bayesian
optimization community60, though other models such as ran-
dom forests61, tree-based surrogate models59, and Bayesian neu-
ral networks62 can also be used. For our problem, we utilize
a Gaussian process-based surrogate model. Using the surrogate
function, we define an acquisition function a to select the next
query point. Various acquisition functions exist, including the
probability of improvement11, expected improvement63, Gaus-
sian process upper confidence bound64, and a portfolio of ex-
isting acquisition functions65. This work uses the expected im-
provement, aligning with numerous studies that attest to its ro-
bustness18,49,50,66.

Recent research in Bayesian optimization has explored multi-
fidelity methods, which seek a balance in evaluations across vary-
ing levels of fidelity67–69. In parallel, multi-objective Bayesian
optimization has been developed to optimize multiple objec-
tives simultaneously70–72. Recent research efforts have sought
to combine these two concepts into multi-fidelity multi-objective
Bayesian optimization by the introduction of continuous fidelity
levels as an optimizable parameter73,74 or aiming to maximize
information gain per unit cost of resources25.

Structure Specifications
In this section, we delve into the specific nanophotonic structures
studied in this work, as illustrated in Fig. 1. In particular, we
examine four following structures:

(a) three-layer structure,

(b) matched-period double-sided nanocone structure,

(c) unmatched-period double-sided nanocone structure, and

(d) meta-structure.

Journal Name, [year], [vol.],1–10 | 3
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Fig. 2 Schematic of nanophotonic structures. The parameters used in
this diagram apply across all structures studied. As an example, for a
three-layer structure, the parameters for upper and lower cones are not
used, while the other parameters remain applicable.

The three-layer and matched-period double-sided nanocone
structures have been previously explored32. In this paper, we
introduce two new structures: (c) the unmatched-period double-
sided nanocone structure and (d) the meta-structure.

Fig. 2 provides a depiction of how the parameters of a struc-
ture are defined. The structure’s parameters include the silver-
layer thickness ts, upper-layer thickness tu, lower-layer thickness
tl , heights for upper and lower cones hu, hl , radii for upper cones
rub, rut , radii for lower cones rlb, rlt , pitches for upper and lower
cones au, al , and the number of upper and lower cones nu, nl .
Depending on the specific structure, some parameters may not be
applicable. For instance, in a three-layer structure, the parame-
ters related to the upper and lower cones are disregarded, and
only ts, tu, and tl are utilized. For a matched-period double-sided
nanocone structure, nu and nl are dismissed and au is equal to al .

Table 1 provides a detailed description of the parameter ranges
and constraints. All parameters except for au and al are dis-
cretized to integers. Several constraints are applied as follows:
rut < rub, rlt > rlb, 2rub ≤ au, 2rlt ≤ al , and nuau = nlal . For eas-
ier management of the constraints, rut < rub and rlt > rlb, we in-
troduce new variables qru and qrl as follows: qru = rut/rub and
qrl = rlb/rlt where qru and qrl are both variables ∈ [0,1). More-
over, the next acquired point is only sampled over the region of
the parameter space that is known to be feasible. If the proposed
solution of an acquisition function violates a constraint, then it is
instead evaluated at the boundary of that constraint.

Besides the three basic structures – three-layer, matched-
period double-sided nanocone, and unmatched-period double-
sided nanocone structures – each defined by a specific set of
parameters, we introduce a new type called a meta-structure.
This is a generalized structure and it is introduced to optimize
the structure from the perspective of automatic structure dis-
covery. To accommodate the meta-structure, we include an
extra parameter – structure selection parameter – that allows
the selection of one structure among various structures. In
our study, we consider five types of structures: three-layer,

single-sided (upper) nanocone, single-sided (lower) nanocone,
matched-period double-sided nanocone, and unmatched-period
double-sided nanocone structures. It is worth noting that the
types of structures can be easily expanded by altering the poten-
tial choices for the structure selection parameter.

Methodology
We address the issue of automatic structure discovery with Multi-
fidelity multi-objective Bayesian Optimization with Warm Starts,
named Multi-BOWS, which effectively incorporates knowledge
from multi-fidelity evaluations and multiple objective functions.
It is inspired by the methodologies previously presented75,76.

Before explaining the details of Multi-BOWS, we enumerate the
high-level procedure of our algorithm:

(i) selection of initial points for low-fidelity multi-objective
Bayesian optimization,

(ii) execution of low-fidelity multi-objective Bayesian optimiza-
tion, constrained by a time budget allocated for the low-
fidelity Bayesian optimization,

(iii) identification of the Pareto frontier (i.e., optimal solutions)
from low-fidelity evaluations,

(iv) warm-starting of high-fidelity multi-objective Bayesian opti-
mization using the identified Pareto frontier,

(v) execution of high-fidelity multi-objective Bayesian optimiza-
tion, constrained by a time budget allocated for this high-
fidelity Bayesian optimization, and

(vi) identification of the Pareto frontier from high-fidelity evalu-
ations.

This procedure is visually outlined in Fig. 3. Steps (i) and (iv)
act as initialization steps, Steps (ii) and (v) are considered as
optimization phases, and Steps (iii) and (vi) focus on identifying
the Pareto frontiers.

Firstly, a certain number of initial points are randomly sam-
pled in Step (i), using uniform distributions or low-discrepancy
sequences like the Sobol’ sequence77. However, unlike Step (i),
Step (iv) uses the Pareto frontier from low-fidelity evaluations
as initial points for high-fidelity multi-objective Bayesian opti-
mization. If the number of points on the Pareto frontier exceeds
the predefined number of initial points, we randomly select the
required number of points from the Pareto frontier. Steps (ii)
and (v), similar to the standard Bayesian optimization algorithm,
sequentially determine the query points based on the allocated
time budgets.

In order to determine the next point, we first create a Gaussian
process regression model to serve as a surrogate function. Given
a set of data points X ∈ Rn×d and their corresponding responses
y ∈ Rn, a posterior predictive distribution over x ∈ X is defined
by the following:

p(y | x,X,y) = N (µ(x | X,y),σ2(x | X,y)), (3)

where µ(x | X,y) is the posterior mean function and σ2(x | X,y)
is the posterior variance function. The specific definitions for the
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Table 1 Definitions, notations, ranges, and constraints applicable to parameters in nanophotonic structures. All values are in nanometers, with the
exception of the last two parameters, which are unitless.

Parameter Symbol Range Constraints

Silver-layer thickness ts {3,4, . . . ,20} –
Upper-layer thickness tu {5,6, . . . ,100} –
Lower-layer thickness tl {5,6, . . . ,100} –
Height of upper cones hu {50,51, . . . ,400} –
Height of lower cones hl {50,51, . . . ,400} –
Pitch for upper cones au [20,400] nuau = nlal , 2rub ≤ au
Pitch for lower cones al [20,400] nuau = nlal , 2rlt ≤ al
Bottom radius of upper cones rub {10,11, . . . ,100} rut < rub, 2rub ≤ au
Top radius of upper cones rut {1,2, . . . ,99} rut < rub
Bottom radius of lower cones rlb {1,2, . . . ,99} rlt > rlb
Top radius of lower cones rlt {10,11, . . . ,100} rlt > rlb, 2rlt ≤ al
The number of upper cones nu {1,2, . . . ,10} nuau = nlal
The number of lower cones nl {1,2, . . . ,10} nuau = nlal

posterior mean and variance functions are given by the following
equations:

µ(x | X,y) = k(x,X)(K(X,X)+σ
2
n I)−1y, (4)

σ
2(x | X,y) = k(x,x)−k(x,X)(K(X,X)+σ

2
n I)−1k(x,X)⊤, (5)

where k, k, and K are covariance functions over two points,
one point and one array of points, and two arrays of points,
respectively, σ2

n is a noise variance, and I ∈ Rn×n is an iden-
tity matrix. For example, an exponentiated quadratic kernel
k(x,x′) = s2 exp(−∥x−x′∥2

2/2l2) can be employed where s2 is a sig-
nal scale and l is a length scale. As we aim to optimize two objec-
tives, transparency and SE, at both low fidelity and high fidelity,
surrogate functions should be constructed for both low fidelity
and high fidelity. In particular, (µ low

tr ,σ low
tr ) and (µ low

se ,σ low
se ), as

featured in Eqs. (4) and (5), define the surrogate functions for
low fidelity, and (µ

high
tr ,σ

high
tr ) and (µ

high
se ,σ

high
se ) are used to de-

fine surrogate functions for high fidelity.

By using four surrogate functions, we are able to define the
corresponding acquisition functions: alow

tr , alow
se , ahigh

tr , and ahigh
se .

This assumes the use of the expected improvement acquisition
function63:

a(x | X,y) =

{
σ(x | X,y)(z(x)Φ(z(x))+φ(z(x))) if σ2(x)> 0,

0 otherwise,
(6)

where z(x) = (µ(x | X,y)−maxy)/σ(x | X,y), Φ is the cumulative
distribution function of standard normal distribution, and φ is the
probability density function of standard normal distribution.

To handle multiple objective functions, we use a random scalar-
ization technique78:

alow(x | X,y) = alow
tr (x | X,y)+10λ low

alow
se (x | X,y), (7)

ahigh(x | X,y) = ahigh
tr (x | X,y)+10λ high

ahigh
se (x | X,y), (8)

where λ low,λ high ∼ U (α,β ). The coefficients λ low and λ high are
sampled every iteration of Bayesian optimization, in order to effi-
ciently identify Pareto frontiers. In this paper, we set α =−2 and
β = 2. We then optimize Eqs. (7) and (8) to determine a query

point:

xlow
∗ = argmax

x∈X
alow(x | X,y), (9)

xhigh
∗ = argmax

x∈X
ahigh(x | X,y), (10)

for Steps (ii) and (v), respectively. Given time budgets for low
fidelity and high fidelity, T low and T high, we repeat Eqs. (9)
and (10) until the allotted time budget is exhausted. Then, as
described in Step (iii), the Pareto frontier of the query points ac-
quired by Eq. (9), denoted as P low, is used as the initial points
of the high-fidelity multi-objective Bayesian optimization:

P low={[ylow
i,tr ,y

low
i,se ]:{[ylow

j,tr ,y
low
j,se]:i ̸= j, [ylow

i,tr ,y
low
i,se ]≺[ylow

j,tr ,y
low
j,se]}= /0},

(11)
where [ylow

i,tr ,y
low
i,se ] is the i-th low-fidelity evaluation by two objec-

tives and [ylow
i,tr ,y

low
i,se ]≺ [ylow

j,tr ,y
low
j,se] implies that both ylow

i,tr < ylow
j,tr and

ylow
i,se < ylow

j,se are satisfied. Similarly, the Pareto frontier of high-
fidelity multi-objective Bayesian optimization can be readily com-
puted using the query points acquired by Eq. (10).

Simulations

We conduct electrodynamic simulations on the aforementioned
nanophotonic structures. Our goal is to compare our Multi-BOWS
framework to existing methods25. We carry out each simulation
on a machine with an Intel Xeon Gold 6126 CPU. For modeling
and simulating nanophotonic structures, we employ the finite-
difference time-domain method through Ansys Lumerical 2022
R2.1 and its Python API.

We execute a low-fidelity multi-objective function [ f low
tr , f low

se ]

and a high-fidelity multi-objective function [ f high
tr , f high

se ] using uni-
form mesh sizes of 40 nm and 2 nm, respectively. The meshes are
overridden at the silver and titanium oxide interfaces in order to
capture the effect of small thickness. These mesh sizes are se-
lected to ensure an appropriate simulation time. As expected, the
evaluations of [ f high

tr , f high
se ] are slower but more accurate than the

ones of [ f low
tr , f low

se ]. Notably, the evaluations of f low
tr can be larger

than 1, which is physically impossible. Due to the lower accuracy
of low-fidelity evaluations, we do not report the results of low-
fidelity evaluations in this section. Instead, we evaluate the fi-
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Fig. 3 Multi-BOWS framework. Initially, low-fidelity multi-objective Bayesian optimization is performed with randomly selected initial points (light
orange). Following that, high-fidelity multi-objective Bayesian optimization is run, utilizing the Pareto frontier derived from the low-fidelity Bayesian
optimization (dark orange) to suggest optimal structure candidates.

nal Pareto frontier acquired by low-fidelity Bayesian optimization
using [ f high

tr , f high
se ]. Moreover, to compare Bayesian optimization

algorithms, we normalize the evaluations of f high
se with min-max

scaling. This way, the AUPF is confined with the range [0,1]. The
AUPF is computed as follows:

AUPF =
|Phigh|

∑
i=1

(yhigh
i,tr − yhigh

i−1,tr)(y
high
i,se − yhigh

min,se)

yhigh
max,se − yhigh

min,se

, (12)

where Phigh is retrieved to satisfy yhigh
i−1,tr ≤ yhigh

i,tr for i ∈
{1, . . . , |Phigh|}, yhigh

0,tr = 0 is assumed, yhigh
min,se is the minimum of

SE, and yhigh
max,se is the maximum of SE. The AUPF is defined within

a two-dimensional space, where it serves the same metric as the
normalized version of the hypervolume measure. Lastly, to mea-
sure f low

tr or f high
tr , the average transparency of visible incident

light with wavelengths between 400 to 700 nm is used.

In our Multi-BOWS approach, we employ Gaussian process
regression utilizing the Matérn 5/2 kernel as a surrogate func-
tion60. We choose the expected improvement policy as an acquisi-
tion function63, and this function is optimized using multi-started
L-BFGS-B by following the work79. For the time budget, we al-
locate 20% to T low and the remaining 80% to T high. The low-
fidelity only or high-fidelity only multi-objective Bayesian opti-
mization initializes with 10 points, while the multi-fidelity multi-
objective Bayesian optimization starts with a total of 10 points,
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Fig. 4 AUPF versus execution time for electrodynamic simulations, based on 10 repeated experiments. AUPF is all reported based on high-fidelity
simulations. The mean (solid) and the standard error (shaded areas) are shown.

Table 2 Quantitative results on our simulations. AUPF with gray color indicates the result obtained by re-evaluating the Pareto frontiers of low-fidelity
evaluations using a high-fidelity function. The standard errors of the sample mean are presented. Note that results in boldface represent the best
results in the respective structures.

Structure
AUPF

Single-fidelity algorithm Multi-fidelity algorithm

Low-fidelity only High-fidelity only Multi-fidelity Multi-BOWS

Three-layer 0.4529 ± 0.0529 0.7939 ± 0.0058 0.7795 ± 0.0090 0.8600 ± 0.0014
Matched-period 0.7231 ± 0.0204 0.8344 ± 0.0049 0.8392 ± 0.0049 0.8579 ± 0.0022
Unmatched-period 0.7088 ± 0.0273 0.7727 ± 0.0072 0.7941 ± 0.0100 0.8141 ± 0.0039
Meta-structure 0.7157 ± 0.0104 0.8286 ± 0.0054 0.8509 ± 0.0035 0.8551 ± 0.0021

out of which 8 are evaluated by a low-fidelity function and the
other 2 points are by a high-fidelity function. Moreover, for the
low-fidelity Bayesian optimization of Multi-BOWS, we start with 8
initial points. If the size of the Pareto frontier of low-fidelity eval-
uations exceeds 10, we randomly select 10 points from the Pareto
frontier of the low-fidelity evaluations. For the existing methods,
we employ the official implementation of the recent work25.*

We investigate four following structures: the three-layer
structure, matched-period double-sided nanocone structure,
unmatched-period double-sided nanocone structure, and meta-
structure. The AUPF is calculated for each structure with four
variations: low-fidelity only, high-fidelity only, and multi-fidelity
multi-objective Bayesian optimization, and Multi-BOWS. Using
the qualitative results in Table 2, we compare four algorithms by
computing X/Y where X and Y are the AUPF results. We obtain
those results by assuming the uncorrelated non-central normal
ratio for a ratio distribution.

We find that the Multi-BOWS approach discovers superior
structures more rapidly compared to other methods and is suc-
cessful in identifying structures that exhibit higher SE and visible
transmittance compared to other methods, as presented in Fig. 4
and Table 2. Our method delivers an AUPF that is 89.9 ±
22.2% and 8.3 ± 0.8% larger in the three-layer structure, 18.6
± 3.4% and 2.8 ± 0.7% larger in the matched-period double-
sided nanocone structure, 14.9 ± 4.5% and 5.4 ± 1.1% larger
in the unmatched-period double-sided nanocone structure, and
19.5 ± 1.8% and 3.2 ± 0.7% larger in the meta-structure com-
pared to the low-fidelity only and high-fidelity only methods, re-

* It is available at https://github.com/belakaria/mf-osemo.

spectively. Interestingly, the earlier multi-fidelity multi-objective
Bayesian optimization technique tends to outperform the low-
fidelity only and high-fidelity only methods except for one case
between the high-fidelity only and multi-fidelity methods for the
three-layer structure. Furthermore, our Multi-BOWS shows 10.3
± 1.3%, 2.2 ± 0.7%, 2.5 ± 1.4%, and 0.5 ± 0.5% larger AUPF
than the existing multi-fidelity algorithm for four structures, re-
spectively.

It is important to note that the number of initial points is iden-
tical across all experiments as previously mentioned. Moreover,
the number of evaluations varies significantly across nanopho-
tonic structures because the simulation time is dependent on the
size of the simulation cell. For example, the low-fidelity only
Bayesian optimization evaluates 462.5000 ± 6.8007 structures
for the three-layer structure, 1218.2000 ± 16.1728 structures for
the matched-period double-sided nanocone structure, 2648.6000
± 98.2692 structures for the unmatched-period double-sided
nanocone structure, and 2948.0000 ± 16.7571 structures for
the meta-structure, and the high-fidelity only Bayesian opti-
mization method evaluates 397.6000 ± 1.7436 structures for
the three-layer structure, 230.3000 ± 42.5888 structures for
the matched-period double-sided nanocone structure, 43.1000
± 12.3810 structures for the unmatched-period double-sided
nanocone structure, and 205.7000 ± 59.3701 structures for the
meta-structure.

Therefore, we can remark two main messages here. Firstly,
the use of multi-fidelity evaluations helps improve a Bayesian
optimization’s ability to find better structures in most of the
simulations. Secondly, while the performance gain in higher-
dimensional problems is smaller than in lower-dimensional prob-
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Fig. 5 Plot of the aggregated Pareto frontiers for the structures we study using Multi-BOWS, based on 10 repeated experiments. To alleviate the
effects of the number of evaluations, we sample the first 100 evaluations from each simulation, except in the case of the unmatched-period double-sided
nanocone structure. Those sampled evaluations of 10 repeated experiments are aggregated in order to show the best structures found. Note that
DSN stands for double-sided nanocone.

lems, our Multi-BOWS approach remains effective for all the
structures compared to the other methods.

We observe interesting characteristics in the structures iden-
tified by our method, as shown in Fig. 5. The structures with
nanocones – both matched-period and unmatched-period double-
sided nanocone structures – exhibit greater visible transparency
than the three-layer structures in the region of high transparency.
The lines plotted in the bottom right box of Fig. 5 show bet-
ter performance in the region of high transparency. In particu-
lar, the results for the unmatched-period double-sided nanocone
structure are comparable to or better than the results for the
matched-period double-sided nanocone structure, even though
the number of evaluations for the unmatched-period structure
is less than the number of evaluations for the matched-period
structure. Additionally, Fig. 5 shows that the meta-structure fa-
vors high-transmission structures in the region of high SE, thus
achieving similar performance to the three-layer structure. It im-
plies that the meta-structure allows the optimization algorithm to
actively seek diverse structures without thorough domain knowl-
edge in optical device design. By leveraging this feature, we can
systematically address the problem of optical device design by
defining a more generic search space and employing a Bayesian
optimization strategy, such as our Multi-BOWS framework.

Conclusion

In this paper, we have introduced a novel method Multi-BOWS,
aimed at addressing challenges in optical device design. This
problem involves optimizing multiple conflicting objectives while
taking into account the fidelity of evaluations. To address this,
we compared various existing Bayesian optimization methods
with Multi-BOWS. Our results show that Multi-BOWS outper-
forms the existing baseline methods in terms of the AUPF, yield-
ing 3.2-89.9% larger AUPF than the low-fidelity only and high-

fidelity only methods for the nanophotonic structures studied,
and demonstrating 0.5-10.3% larger AUPF than the existing
multi-fidelity method for the investigated structures. Additionally,
we note interesting characteristics of the nanophotonic structures
discovered by our method, indicating its potential in uncovering
more effective solutions.

Data availability
The code for Multi-BOWS implementation and simulations can be
found at https://github.com/jungtaekkim/Multi-BOWS.
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