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Eliminating light reflection from the top glass sheet in optoelectronic applications is often desirable across a broad range
of wavelengths and large variety of angles. In this paper, we report on a combined simulation and experimental study of
single-layer films, nanowire arrays, and nanocone arrays to meet these antireflection (AR) needs. We demonstrate the
application of Bayesian learning to the multiobjective optimization of these structures for broadband and broad angle
AR and show the superior performance of Bayesian learning to genetic algorithms for optimization. Our simulations
indicate that nanocone structures have the best AR performance of these three structures, and we additionally provide
physical insight into the AR performance of different structures. Simulations suggest nanocone arrays are able to achieve
a solar integrated normal and 65◦ incidence angle reflection of 0.15% and 1.25%, respectively. A simple and scalable
maskless reactive ion etching process is used to create nanocone structures, and etched samples demonstrate a solar inte-
grated normal and 65◦ reflection of 0.4% and 4.9%, respectively, at the front interface. © 2020 Optical Society of America
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1. INTRODUCTION

Optoelectronic devices such as touch screens, phones, tablets,
laptops, and light emitting diodes (LEDs) typically consist of a
top glass sheet that protects the device from the environment.
Antireflection (AR) is important in this glass for improving the
outcoupling efficiency of light in displays or LEDs, augmenting
the responsivity of sensors, or increasing the power conversion
efficiencies of solar modules. AR is often needed across a range of
wavelengths such as the visible range or the solar spectrum and is
often desired across a wide range of incidence angles. Broad angle
AR may increase viewing angles in displays or LEDs or increase
power conversion efficiencies in solar modules.

A single-layer (SL) thin film of AR coating can provide for
perfect AR at one particular wavelength and normal incidence.
However, these thin films cannot demonstrate high AR across
a wide range of wavelengths or incidence angles. An alternative
approach is to use sub-wavelength nanostructures [1]. Extensive
research efforts have been devoted to construct nanostructured
AR materials to reduce light reflection [2–4]. These nanostruc-
tures have included nanowires (NWs) [4] and nanocones (NCs)
[5]. Many NC-like structures have also been fabricated in the
literature by methods such as metal dewetting [2], interference

lithography [3], soft imprint lithography [4], nanoparticle dip-
coating and precursor-derived one-step assembly [6], as well as
ultrasonic-assisted solgel [7]. These studies demonstrate the poten-
tial of NW and NC arrays in providing broadband and broad
angle AR. However, there has yet to be a comprehensive study
on the performance limits of these nanostructures. Furthermore,
many fabrication methods are limited in scalability due to the
need for multiple processing steps, often comprising some sort of
patterning followed by etching.

In this paper, we study the optimal AR characteristics of SL
films, NW arrays, and NC arrays for minimizing solar integrated
reflection across a broad range of wavelengths for normal incidence
and wide angle incidence. A Bayesian learning and optimization
method is combined with electrodynamic simulations to rapidly
search through the parameter space of various structures and
determine optimal and near-optimal structures. Bayesian learning
outperforms genetic algorithms in determining higher performing
structures under the same simulation budget.

We demonstrate that NC arrays exhibit the best performance
for both broadband and broad angle AR of these three structures.
NW arrays demonstrate performance comparable only to SL
thin films, where NWs function as effective media with indices
of refraction about the same as the optimal SL thin film. Optimal
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NWs have more of a flat disk shape instead of a high aspect ratio
wire shape. NCs grade the index of refraction and have the best
performance when the bottom of the NCs fill out the surface to
provide for a smooth change in index of refraction with the flat
glass. The NCs have a narrow optimal or near-optimal angle of 76◦

to 87◦. Our simulations suggest that NC arrays can demonstrate
a minimum solar-integrated reflection of 0.15% at normal inci-
dence and 1.25% at 65◦ incidence or solar-integrated reflection
of 0.78% at 65◦ and 0.23% at normal incidence. We demonstrate
and validate the simulation results by fabricating NC structures
with maskless reactive ion etching (MRIE) and compare their
performance. NC arrays fabricated by the simple and scalable
single-step MRIE process demonstrates a 0.4% for normal inci-
dence and reflection of 4.9% at 65◦ incidence at the front air–glass
interface.

2. SIMULATION

The first part of our study focused on electrodynamic simulations
to study solar integrated reflection. We focused on minimizing
two objective functions: the solar integrated reflection across the
wavelengths 280–1200 nm at (1) normal incidence (Rsolar,0◦ ) and
(2) 65◦ incidence angle (Rsolar,65◦ ). The solar integrated reflection
Rsolar is calculated from

Rsolar =

∫
bs(λ)R(λ)dλ∫

bs(λ)dλ
, (1)

where R(λ) is the reflection spectrum or the reflection as a func-
tion of wavelength λ, and bs (λ) is the photon flux density of
the AM1.5 global solar spectrum [8]. Rsolar,65◦ is calculated by
averaging the solar-integrated reflection for transverse electric
(TE)-incident light and transverse magnetic (TM)-incident light
at 65◦. Assuming normal incidence light at solar noon, an inci-
dence angle of 65◦ corresponds to 4 h 20 min before and after solar
noon.

Figure 1 shows schematics of the three types of structures stud-
ied: (a) SL films, (b) NW arrays, and (c) NC arrays. The SL film
is defined by only its thickness t . For the SL film, the material was
assumed to have a wavelength-independent index of refraction that
is the geometric mean of the materials on its sides, n1 =

√
n0n2. In

this work, n1 = 1.21 was used for the SL film, since n0 = 1 for air
and n2 = 1.46 for glass. The NW array is defined by its pitch (a ),
height (h), and diameter (d ). The NC arrays are defined by four
variables: pitch (a ), height (h), top diameter (dtop), and bottom
diameter (dbot). In the special case of dtop = dbot, the NC array
is a NW array. The domains over which the optimization took
place for the NW array was a ∈ [1, 400] nm, d ∈ [1, 400] nm,
and h ∈ [1, 800] nm with the constraint d ≤ a . For the NC
array, the domains were a ∈ [1, 400] nm, dbot ∈ [1, 400] nm,
dtop ∈ [1, 400] nm, and h ∈ [1, 800] nm with the following con-
straints: dbot ≤ a and dtop ≤ dbot. The NW and NCs are assumed
to be glass.

The finite difference time domain (FDTD) method [9] was
used for optical simulations. Simulations were set up so that
the reflection from only a single air–glass interface was measured.
Please see Supplement 1 for simulation details. Our goal in running
these simulations is to search for the solution to

min
x∈X

Rsolar,0◦(x), Rsolar,65◦(x), (2)

a
a

h

d

dtop

dbot
h

a
a

t
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Fig. 1. Schematic of (a) SL thin films, (b) NW arrays, and (c) NC
arrays.

where X is the space of all viable choices of the design param-
eters (those that satisfy the constraints stated above). In this
setting, where there are two competing metrics, we develop a
multiobjective Bayesian optimization strategy.

3. MACHINE LEARNING STRATEGY

Unlike a scalar optimization problem, a multiobjective optimiza-
tion problem does not have a single globally optimal value/solution
(except in degenerate cases). In searching for our approximate
solution to Eq. (2), we seek to approximate the Pareto frontier [10]
of objectives Rsolar0◦ and Rsolar,65◦ . The Pareto frontier is the set of
all efficient fabrication configurations, where efficiency is defined
as the inability to improve one objective without hurting the other.
In finding these configurations, we are able to identify the best
possible fabrication strategies and understand how Rsolar,0◦ and
Rsolar,65◦ compete with each other. The actual frontier, in theory,
often contains infinitely many points, and as such, we have the
ability only to approximately identify points as efficient.

We seek to develop a strategy that effectively approximates the
frontier in as few simulations as possible; such a strategy is referred
to as sample efficient in contrast to so-called big data methods.
Bayesian optimization (abbreviated BO, but also referred to as
Bayesian active optimization) is a sample efficient method for opti-
mizing black-box objective functions [11]. BO methods applied in
this situation balance a desire to learn how the structure parameters
influence the reflection with a desire to more completely refine
the knowledge regarding the minimal reflection values. Standard
BO consists of two components: a probabilistic model , to model
the objective function f , and an acquisition function, to determine
which parameters x to sample next.

In a standard BO setting, the objective function f is assumed
to be a realization of a Gaussian process (GP) with mean function
µ and a positive definite covariance kernel K , i.e., f ∼ GP(µ, K )
[12,13]. The mean and covariance functions are defined to have
hyperparameters, such as length scales, which are learned through
strategies such as maximum likelihood estimation. In all of our
modeling, we assume our GPs to have constant mean µ(x)= A
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Fig. 2. Strategy described in Section 3 (denoted BO) is compared to the genetic algorithm NSGA-II (denoted GA) with different population sizes
(e.g., 5× 20 has a population size 5 with 20 generations). Each algorithm was given an evaluation budget of only 100 simulations. For both the nan-
wowire and nanocone simulations, the Pareto frontier of the BO algorithm dominates the Pareto frontiers of all the GA variants: (a) nanowire, all results,
(b) nanowire, Pareto frontier, (c) nanocone, all results, and (d) nanocone, Pareto frontier.

(A is fit using generalized least squares) and a C 4 Matérn kernel K
with independent length scales in each dimension. A Tikhonov
regularization (noise variance) parameter is fixed to be 10−3,
mainly to avoid ill-conditioning.

An acquisition function is a utility function that measures the
value of sampling at different points within X , given the observed
data. Acquisition functions balance the tradeoff between exploita-
tion, suggesting parameters near where we have observed the best
results so far, and exploration, suggesting parameters in regions
where we have not sampled. After n different input parameters
have been tested, the nth probabilistic model can be created. The
maximal argument of the acquisition function determines the next
design parameters x .

We describe our adaptation of BO to efficiently search for the
Pareto optimal set of design parameters. The strategy is derived
from the ε-constraint method [14]. We reformulate the multiob-
jective optimization problem Eq. (2) as two constrained scalar
optimization problems:

min
x∈X

Rsolar,0◦(x ), s.t. Rsolar,65◦(x )≥ R̂solar,65◦ , (3a)

min
x∈X

Rsolar,65◦(x ), s.t. Rsolar,0◦(x )≥ R̂solar,0◦ , (3b)

where R̂solar,0◦ and R̂solar,65◦ are thresholds. By changing R̂solar,0◦

and R̂solar,65◦ throughout the optimization, we can discover
different sections of the Pareto efficient frontier.

In particular, we adapt techniques from the constrained BO
literature [15,16]. After k simulation runs have been observed, two
independent GP models s 0,k and s 65,k are created for reflection
at 0◦ and 65◦, respectively. Using these models, an acquisition
function is defined for each component of Eq. (3). This acquisi-
tion function is modified from the expected improvement [17] to
account for the desire for viability. Considering, at first, only the
solution to Eq. (3a), imposing the viability requires us to consider
not only the distribution of r0 ∼ s 0,k(x) (a Gaussian distribu-
tion), but the joint distribution r0, r65 ∼ s 0,k(x), s 65,k(x). The
acquisition function is defined as

a Rsolar,0◦ ,k(x)=Er0,r65∼s n,k (x),s u,k (x)

[
(r̃0,k − r0)+ Ir65≥R̂solar,65◦

]
,

(4)
where r̃0,k is the lowest Rsolar,0◦ value observed thus far, (ξ)+
denotes max(ξ, 0), and Iν is the indicator function. In other
words, we are maximizing the expected improvement for viable

points; points that do not satisfy the threshold, contribute zero
improvement. An analogous acquisition function a Rsolar,65◦,k

can similarly be defined—the BO algorithm proceeds to choose
the next x at which to run a simulation by alternating between
maximizing a Rsolar,0◦,k and maximizing a Rsolar,65◦,k .

Since our design parameter space X has linear constraints, we
employ a multistart quasi-Newton optimizer that can take these
constraints into consideration when optimizing the acquisition
function, namely, sequential least square programming (SLSQP)
[18,19]. This ensures that all suggestions made by our algorithm
are feasible. We also implement a hit-and-run sampling method
for generating points within the constrained space for initializing
the optimizer [20]. The BO algorithm is initialized with 10 such
randomly chosen points.

4. ANALYSIS OF RESULTS

To empirically demonstrate the performance of this BO algo-
rithm, we compare our method against a popular multiobjective
genetic algorithm NSGA-II (as natively implemented in MATLAB
through the function gamultiobj) [21,22]. Figure 2 plots the
results of this comparison. A total optimization budget of 100
simulations was used; we see that our multiobjective BO method
produces a better Pareto frontier than NSGA-II for both the NW
and NC simulations. The performance of genetic algorithms is
highly sensitive to the population size used: a small population size
may be trapped in local minima, while a large population size can
find a better optimum but requires more generations to converge.
Figure 2 shows the effect of population size for a fixed function
evaluation budget of 100. Four different population sizes and
number of generations were considered: 5 (population size) ×20
(number of generations), 10× 10, 20× 5, and 50× 2. For both
the NW and NC array simulations, the Pareto frontier of the BO
algorithm dominates the Pareto frontiers of all the GA variants.

Subsequently, BO was performed with a budget of 500 simula-
tions for the NW and NC arrays. For the SL film, the thickness of
the films was changed from 0 nm to 800 nm in 10 nm increments.
Figure 3 shows the scatter plot and Pareto frontier of Rsolar,0◦ (x
axis) and Rsolar,65◦ (y axis) for (a) SL films, (b) NW arrays, and
(c) NC arrays. The performance of bare glass is shown for reference
in each of these plots with a purple box. Figure 3(d) compares the
Pareto frontier of the SL films, NW arrays, and NC arrays. The SL
films, NW arrays, and NC arrays all show better performance than
bare glass. The Pareto points for the SL films and NW arrays show
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Fig. 3. Scatter plots and Pareto frontier of Rsolar,0◦ and Rsolar,65◦ for
(a) SL films, (b) NW, and (c) NC arrays. (d) Comparison of the Pareto
frontier for all structures.

comparable performance, and there is no significant difference
between the Pareto line for these two systems. Overall, NC arrays
demonstrate the best broadband and broad angle AR properties.
NC arrays can demonstrate a minimum Rsolar,0◦ = 0.15% with
corresponding Rsolar,65◦ = 1.25% or minimum Rsolar,65◦ = 0.78%
with corresponding Rsolar,0◦ = 0.23%.

Next, we performed some post-hoc analysis of the compu-
tations conducted during the search for the efficient frontier;
we analyze the effect of geometry on optimal or near-optimal as
defined by Pareto efficiency. Here, near-optimality refers to the
points being close to a point on the efficient frontier and accounts
for some of the numerical error in the simulations due to finite grid
size and simulation time. Figure 4 presents the post-hoc analysis
of NW array simulations, where Fig. 4(a) provides a parallel axes
plot, Fig. 4(b) depicts the approximate Pareto frontier, and Fig. 4(c)
identifies a characteristic of the geometry of all the efficient and
nearly efficient results. For the NW arrays, efficient solutions
appear only with h in the domain [140, 220], despite the full prob-
lem domain being [0, 800]. The combination of low height h plus
larger diameter d (in consistent proportion to pitch a ) suggests that
the structures with lowest reflection tend to have more of a flat disk
shape than a high aspect ratio wire shape. These structures occupy
approximately 41% of the surface of the glass. This fill factor makes
the effective index of refraction of these NW arrays (using the
effective medium approximation) about 1.28, which is close to
1.21 of an ideal SL film. The NWs function as effective media and
thus, overall, can give only about the same performance as an SL
film.

Figure 5 provides analogous plots for the NC array simula-
tions that have a very different spread of Pareto efficient outcomes
compared to the NW arrays. Of greatest note, Fig. 5(a) indicates
that dbot = a for all efficient configurations. This implies that the
reflection is minimized by maximizing the amount of material at
the interface between the bottom of the NCs and the glass. From

(a) (b) (c)

Fig. 4. We applied the strategy described in Section 3 with 500 iterations to approximate the Pareto frontier of Eq. (2) for the nanowire geometry
depicted in Fig. 1(b). The parallel axes plot in panel (a) shows the relationship between design parameters a , d , and h and the reflectivity metrics. The colors
are defined through the position of the fabrications on the Pareto frontier depicted in panel (b); only a selection of points nearly on the frontier are presented
for clarity. In panel (c), a line is fit to the nearly efficient points demonstrating a consistent linear relationship between nanowire diameter and spacing
between nanowires.

(a) (b) (c)

Fig. 5. We applied the strategy described in Section 3 with 500 iterations to approximate the Pareto frontier of Eq. (2) for the nanocone geometry
depicted in Fig. 1(c). The parallel axes plot in panel (a) shows the relationship between design parameters a , dtop, dbot, and h and the reflectivity metrics. The
colors are defined through the position of the fabrications on the Pareto frontier depicted in panel (b). In panel (c), a line is fit to the nearly efficient points
demonstrating a consistent linear relationship between nanocone base diameter and the angle of the nanocone.
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an effective medium analysis, this minimizes the discontinuity
between the bottom of the NC and the top surface of the glass.
Figure 5(a) also shows a strong positive correlation (although not a
linear relationship) between dtop/a and Rsolar,0◦ . Having a smaller
dtop/a reduces the discontinuity in the effective index of refraction
between the air and the top of the NCs and thus reduces the reflec-
tion. Figure 5(b) shows a plot of the nearly efficient outcomes, but
with cross sections of the NCs placed along the frontier. In contrast
to the NWs, all of the nearly efficient results have a height h in the
domain of [600, 790] (note the range was 0 to 800 nm). Figure 5(c)
shows the line

Cone Angle (rad)=−0.000552 dbot + 1.56,

fit to the NC’s nearly efficient points with R2
= 0.965. These

angles all fall within [1.33, 1.52] rad (or 76.2◦ to 87.1◦). The cone
angle is computed with

Cone Angle (rad)= tan−1

(
2h

dbot − dtop

)
.

A different linear relationship is demonstrated in Fig. 4(c) for the
NW simulations. The line

d = 0.726a + 3.49

was fit to the NW’s nearly efficient points with R2
= 0.980. This

implies that in the NW case, roughly 41% of the surface is covered
in NWs.

NC arrays with a morphology similar to near-optimal simu-
lated structures were fabricated on fused silica glass using MRIE
methods developed by the authors [23,24] (see Supplement 1).
In contrast to other methods in the literature, this is a simple and
scalable method that requires only a single process step with no
patterning required. The direct etching of nanostructures directly
into the glass allows for the structures to be tightly packed together,

which simulations suggest enhance AR. Figures 6(a-i) and 6(a-ii)
show scanning electron microscopy (SEM) images of a NC array
fabricated by MRIE at different magnifications. The AR properties
of fabricated samples were characterized by a spectrophotometer.
Figure 6(b) compares (i) R0◦(λ) and (ii) R65◦(λ) over the wave-
length range of 280–1200 nm for bare glass and a fabricated NC
array on a single side of the glass. The reflection from the front
surface is estimated by assuming incoherence between the front
and back surfaces. Please see Supplement 1 for the raw data and
calculations. The photon flux density bs (λ) is plotted on the right
y axis. The bare glass shows flat behavior in the wavelength range
with Rsolar,0◦ = 3.4% and Rsolar,65◦ = 12.5%. The fabricated
NC array exhibits excellent AR properties with Rsolar,0◦ = 0.4%
and Rsolar,65◦ = 4.9%. Simulated results are shown for the reflec-
tion spectra from bare glass and the NC array. For the NC array,
the results are plotted for dtop = 140, dbot = 390, a = 390, and
h = 240 nm. Figure 6(c) shows contour plots of the reflection
spectrum as a function of wavelength and incidence angle for
(i) the simulated structure and (ii) fabricated NC array. For a wide
range of angles and wavelength, and for both simulation and exper-
imental data, the plots are in the blue range, which means that the
reflection is less than 5%, and there is a good agreement between
simulation and experimental results.

In conclusion, we report using Bayesian learning to find the best
AR geometry for different AR coatings of SL films, NW arrays,
and NC arrays. We demonstrated that Bayesian learning outper-
forms genetic algorithms in optimizing these structures for AR.
We showed that NC arrays have the best broadband and broad
angle AR performance, where the NW arrays and SL films are
comparable. Simulated NC arrays can demonstrate a minimum
solar-integrated reflection of 0.15% at normal incidence and
1.25% at 65◦ incidence or solar-integrated reflection of 0.78%
at 65◦ and 0.23% at normal incidence. We also provide physical

Fig. 6. Experimental NC array results. (a) SEM images of NC array fabricated by MRIE. (b) Experimentally measured and simulated (i) R0◦(λ) and
(ii) R65◦(λ) for bare glass and NC arrays. (c) R as a function of wavelength and incidence angle for (i) simulations and (ii) experiments.
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insight into the performance of the different structures. MRIE fab-
ricated NC arrays on both sides of glass showed a solar integrated
reflection of 0.4% for normal incidence and reflection of 4.9% at
65◦ incidence.
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