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Creating glasswing butterfly-inspired durable
antifogging superomniphobic supertransmissive,
superclear nanostructured glass through Bayesian
learning and optimization†

Sajad Haghanifar, a Michael McCourt,b Bolong Cheng,b Jeffrey Wuenschell, c

Paul Ohodnickic and Paul W. Leu *ade

The creation of durable superomniphobic surfaces with optical

functionality has been extremely challenging. Major challenges

have included low optical transmission, low optical clarity, lack of

scalable fabrication, condensation failure, and inability to self-heal.

Inspired by recent research on the transmission advantages of the

random nanostructures on the glasswing butterfly, we report on a

strategy to create self-healing, random re-entrant nanostructured

glass with high liquid repellency and antifogging properties with

supertransmission (99.5% at 550 nm wavelength for double-sided

glass) and superclarity (haze under 0.1%). Our approach to creating

these random nanostructures is to utilize a multiobjective learning

and Bayesian optimization approach to guide the experiments of

glass substrate fabrication. The surface demonstrates static water

and ethylene glycol contact angles of 162.1 � 2.08 and 155.2 � 2.28,

respectively. The glass exhibits resistance to condensation or anti-

fogging properties with an antifogging efficiency more than 90%

and demonstrates the departure of water droplets smaller than

2 lm. The surface can restore liquid-repellency after physical

damage through heating for 15 minutes. We envision that these

surfaces will be useful in a variety of optical applications where self-

cleaning, antifouling, and antifogging functionalities are important.

Introduction

Natural surfaces such as lotus leaves, moth eyes, and butterfly
wings have evolved over millions of years to optimize different
surface functionalities related to survival and adaptation in

different environments. Various unique micro- and nanostructures
may be found in these natural surfaces that provide for function-
alities such as antisoiling, self-cleaning, bacterial resistance, anti-
fogging, and water harvesting.1–6 Inspired by nature, researchers
have sought to understand how different micro- and nano-
structures provide for desired functionalities and utilized this
knowledge to demonstrate a multitude of synthetic surfaces
with novel functionalities.7–11

Many self-cleaning surfaces have been demonstrated12–14

that are inspired by the superhydrophobic leaves of the Nelumbo
nucifera (sacred lotus), which exhibit both high wetting contact
angle (superhydrophobicity) and low contact angle hysteresis
(adhesion) due to the combination of hierarchical surface
morphology and hydrophobic epitcuticular wax.15 Superhydro-
phobic surfaces may be created through low-surface energy
micro-/nanostructures which promote Cassie–Baxter wetting,16

where the water droplet contacts a small fraction of the surface
due to air being trapped with the structures. This is in contrast
to Wenzel wetting, where the water homogeneously contacts the
surface.17 Water droplets easily roll or bounce off superhydro-
phobic surfaces, while removing dust particles with them.
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New concepts
This paper demonstrates a design process that combines Bayesian
learning and optimization with the physical intuition of the authors to
create a new high-performance, multi-functional glass. The integration of
machine learning methods and physical intuition enables us to efficiently
search a high-dimensional fabrication space for creating random
re-entrant nanostructures inspired by those on the glasswing butterfly.
In particular, we pose a multiobjective optimization problem where we
seek to balance the photon management and wettability properties of the
surface, and determine a subset of the Pareto efficient frontier that is
subject to pre-defined threshold values. We report on a self-healing
supertransmissive and superclear nanostructured glass with high liquid
repellency and antifogging properties. We envision that these surfaces
will be useful in a variety of optical and optoelectronic applications where
self-cleaning, anti-fouling, and anti-fogging are important.
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While these surfaces effectively repel water, there is also
great interest in surfaces that repel more types of liquids than
just water. The ability to repel many liquids is referred to as
superomniphobicity, where surfaces demonstrate a static contact
angle greater than 1501 and low contact angle hysteresis for a
variety of liquids.18–22 Creating surfaces that are superomniphobic
is significantly more challenging than creating ones that are
superhydrophobic. This is because the surface tensions of oil
and other organic liquids are lower than water and thus, they
tend to spontaneously spread across surfaces and past trapped
air.23–27 Springtail insects are the only known surface in nature
that display apparent wetting contact angles y 4 1501 and low
hysteresis for a wide range of fluids.27 Recent research has suggested
that the key to obtaining superomniphobicity is re-entrant
structures or surfaces with concave topographic features, which
provide for robust metastable trapped air interfaces.22

While many synthetic superomniphobic surfaces have been
demonstrated,28,29 major challenges exist in the creation of
superomniphobic surfaces with high transparency or optical
functionality. Current barriers to realizing superomniphobic
optical materials include (i) low optical transmission, (ii) poor
optical clarity due to light scattering, (iii) lack of process
scalability, (iv) condensation failure, and (v) poor abrasion
resistance. Many of the superomniphobic coatings in the
literature have no regard for optical transparency.18,19,30 Additionally,
various re-entrant microstructures that have been demonstrated
for superomniphobicity24,27,31 are far too large to provide for anti-
reflection. Subwavelength structures such as the 200 to 300 nm
sized pillars in moth eyes are needed for antireflection.32 Poor
optical clarity due to high haze is also a major issue. The large
difference in refractive index at the solid–air interface of these
surfaces results in significant light scattering.12,33–35 While light
scattering is desirable in some optoelectronic applications such
as solar cells and LEDs,36–39 the scattering of light contributes to
the blurriness of text and images viewed in displays.25,40

Creating superomniphobic surfaces through scalable manu-
facturing processes is a challenge due to the more demanding
requirements for re-entrant micro-/nanostructures that are
needed to achieve omniphobicity. Re-entrant structures have
generally been achieved by complex micropatterning of a mask
followed by some isotropic etch to provide for undercutting.24,27,29,31

However, the need for patterning limits the scalability of these
methodologies. There is much interest in maskless or pattern-
free processing methods,12,33–35 that are generally more scalable
to larger areas.

Condensation on glass or so-called fogging can result in poor
visibility7 and destroy the superhydrophobicity of surfaces.8 Nano-
structures with high height over pitch aspect ratios as well as
close spacing are desirable for stable Cassie–Baxter wetting.35,41

However, the need for high aspect ratio structures leads to poor
abrasion resistance as tall, thin nanostructures can be easily
scratched off. Indeed, many natural surfaces such as insect
wings or eyes tend to be very fragile under abrasion.42

Identifying a fabrication process for a high performance and
multifunctionalized substrate with random nanostructures requires
allowing great freedom in the possible fabrication process.

Consequently, the number of process parameters for creating
these nanostructures is often high-dimensional, with many etching
and deposition process parameters that may be varied. Searching
this space of possible fabrication strategies is often limited to grid-
like search methods where a particular process parameter is system-
atically varied based on physical intuition. That research approach is
only effective to very small localized regions of the input parameter
space and only in low dimensional spaces.

In this paper, we address these challenges by combining a
Bayesian machine learning procedure with our physical intuition
to create a new high performance glass. To create this new glass,
we demonstrate a design process that utilizes Bayesian learning
and optimization43–45 to facilitate an efficient search of this
multi-dimensional fabrication space. To balance the photon
management and wettability properties, we posed a multiobjective
optimization problem, where a subset of the Pareto efficient frontier
is explored subject to pre-defined threshold values (as stated using
expert physical intuition). Gaussian processes are built using existing
experimental data, and then updated after each 5 experimental
fabrications (which are conducted in parallel batches of 5 to facilitate
a faster search). These batches of 5 fabrication strategies were
devised to maximize a modified form of expected improvement,
which defines the utility of identifying high performing fabrication
parameters subject to their viability of satisfying the thresholds.

Using this approach, we demonstrate the successful creation
of a new self-healing, durable superomniphobic glass with ultra-
high transparency and ultralow haze. Inspired by recent analysis
of glasswing butterfly wings,3 this research focuses on random
nanostructures as opposed to highly ordered sub-wavelength
structure arrays that may exhibit undesirable optical diffraction
patterns. The glass is demonstrated through a simple, scalable
two-step maskless reactive ion etching and fluorination process,
which we demonstrate on 4 inch diameter glass wafers. Single-side
nanostructured glass exhibits 97.0% total transparency while
double-side nanostructured glass exhibits 99.5% at 550 nm wave-
length and less than 0.1% haze for both at the same wavelength.
The glass shows broadband antireflection (o20%) even at high
incidence angles of 701. The specular reflection for single-side
nanostructured glass and double-side nanostructured glass are
5.8% and 4.4% at 451 incident angle, respectively, while normal
glass shows 8.3% reflection at the same incident angle. In addition,
static water and ethylene glycol contact angles of 162.1 � 2.01 and
155.2 � 2.21, respectively, for fused silica glass were demonstrated.
The glass exhibits resistance to condensation or antifogging
properties. The glass we reported here shows antifogging efficiency7

more than 90% and demonstrates water departure of droplets
smaller than 2 mm. The glass shows self-healing behavior after
500 mechanical abrasion cycles with an abrasive pad and pressure
of 1225 N m�2. The abraded glass can recover its high water and oil
contact angle after heating for 15 minutes.

Fabrication strategy

The nanofabrication process is performed in two steps: (a)
reactive ion etching (RIE) and (b) plasma enhanced chemical
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vapor deposition (PECVD) and surface treatment with fluorination.
This fabrication process scalably creates the nanostructures
directly into the fused silica glass without the need for patterning
or an external mask.33,34 Fig. 1 depicts the input and output
parameters under analysis, and suggests how we efficiently
optimize this process (which we discuss in greater detail later
in this article). Nine input process parameters were considered:
(1) the CHF3 flow rate, (2) the Ar flow rate, (3) the O2 flow rate, (4)
the CF43 flow rate, (5) the SF6 flow rate, (6) the etching time, (7)
the radio frequency (RF) power, (8) the pressure of the etch
chamber, and (9) the SiO2 deposition time. The first eight
parameters are associated with the first processing step, while
the last parameter is associated with the second processing step.

The first fabrication step focuses on RIE to create sub-wavelength
nanostructures in the fused silica in order to maximize the total
transparency and minimize the haze at the wavelength of 550 nm.
In the RIE process, the etch chamber is pumped down to high
vacuum and then an etching gas is flowed into the chamber. Next, a
13.56 MHz radio-frequency (RF) power is applied to a pair of parallel
electrodes which generates a plasma. Reactive species, such as ions
and radicals, and monomers are formed when the etch gas is
dissociated in this plasma. These reactive species and monomers
are transported onto the substrate surface by the electric field
and react with the etch target material and competitive reactions
of etching and deposition take place near the surface.46 The
morphology of the etched nanostructures depend strongly on the
RIE process parameters such as the pressure, gas chemistry, and
RF power.

The second processing step focuses on creating re-entrant
structures and a low energy surface. In this processing step, we
consider the deposition of silicon dioxide (SiO2) by PECVD on
top of the sub-wavelength nanostructures in order to make the
structure re-entrant followed by flourination.35 We focus on
varying the deposition time, which affects the amount of SiO2

deposited, while all the other processing parameters are fixed.
Previous research has demonstrated that a concave (re-entrant)

surface formed by roughness upon microscale features results in
local energy minimization and these surfaces are capable of pinning
the liquid–air interface. These structures stabilize the Cassie–Baxter
wetting state, which results in high contact angle for different liquids
with various surface energy.22,47 In PECVD, the pressure of the
chamber and the power were set at 900 mTorr and 60 Watt,
respectively. The flow rate of silane/nitrogen (SiH4/N2) and
dinitrogen monoxide (N2O) were both 140 sccm. The thickness
of the SiO2 layer can be controlled by the deposition time. In our
process, the deposition rate was approximately 110 nm min�1. The
temperature of the PECVD chamber was fixed at 400 1C.

The structures were modified with flourosilane after SiO2

deposition to create a low surface energy surface by spin coating
method. Tridecafluorooctyl triethoxysilane (FAS, Dynasylan F 8261)
was mixed with trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)-
silane (with ratio of 5 : 1 vol%) and the solution was dispersed in
ethanol (5 : 1 vol%).22 The final solution was spin coated on the
glass substrates for 60 s at 1500 rpm, followed by annealing at
95 1C for 10 min. The substrates were then cleaned with acetone
and dried with nitrogen.

We focused on optimizing three output parameters: (1) maximize
transparency, (2) minimize haze, and (3) maximize oil static contact
angle. The optical properties were characterized using a spectro-
photometer (PerkinElmer, Lambda 750), equipped with a 60 mm
integrating sphere. The angle-resolved reflection spectra was
measured on an Agilent UV-Vis-NIR Cary-series spectrophoto-
meter system. A large (61) detector aperture was used to ensure all
light was collected from the narrow source beam (11 apertures) at
high incident angle. At each angle the reflection spectra was
collected in a narrow band around 550 nm (�5 nm) in 1 nm
increments and averaged. This process was performed for both
TE- and TM-polarizations. The unpolarized spectra were calculated
from the average of the TE and TM polarized light.

The liquid contact angles were measured using an Attension
Theta optical tensiometer. For the condensation test, a humidifier
and dehumidifier were used to control and set the humidity of the

Fig. 1 Schematic of experimental fabrication and Bayesian learning optimization process for nanostructured glass.
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system to specific values. Samples were held vertically, while a
humidity control was used to set the humidity of the surrounding
area to 80%. The Attension Theta optical tensiometer was used to
observe the formation of droplets on the substrates. The relative
humidity was sustained for 45 minutes while a video was recorded
at 1 frame per second.

Experimental design methodology

We consider the fabrication of nanostructured substrates as
defined in the previous section, where we simultaneously want
high performance photon management and wetting properties
(Fig. 1), as a multiobjective optimization problem with solution x*,

x� satisfies

x� ¼ argmaxx2X TtotalðxÞ;

x� ¼ argminx2X HðxÞ; and

x� ¼ argmaxx2X yoðxÞ

8>>><
>>>:

(1)

where X is the space of all possible choices of the process
parameters. We denote x to be both the fabrication process
parameters and the resulting nanostructure from using those
parameters. Ttotal is the total transmission, H is the haze, and
yo(x) is the oil contact angle.

The total transmission and haze are optimized for wave-
length l = 550 nm, which is in the middle of the visible spectrum,
and ethylene glycol was chosen as the oil. The wavelength-
dependent haze H(l) is defined as

HðlÞ ¼ TscatteredðlÞ
TtotalðlÞ

� �
� 100%; (2)

where Ttotal(l) is the total transmission and Ttotal(l) = Tscattered(l) +
Tspecular(l), where Tscattered is the scattered transmission and
Tspecular is the specular or direct transmission.

In general, there is no unique structure x* that is simulta-
neously optimal in all the objectives in eqn (1). In lieu of such a
point, the solution to such a multiobjective problem is often
defined as the Pareto-optimal set, or Pareto-efficient frontier
P 2 X . Pareto optimal parameters x 2 P evince a ‘‘balance’’
between objective function values, such that no x0 2 X can yield
better performance across all objective functions; any improve-
ments in one metric would necessitate a loss in performance in
at least one other metric (thus the sense of balance). A more
thorough explanation of the topic can be found in multicriteria
literature.48

Standard Bayesian optimization

Bayesian optimization is a sample-efficient iterative search frame-
work, where the relationship between process parameters and
objective function values is unknown, and function evaluations
(executing the fabrication and characterizing the resulting substrate)
are expensive or time consuming. Standard Bayesian optimization
consists of two components: a probabilistic surrogate model, to
model the objective function f, and an acquisition function, to
determine which x parameters to next sample.

In a typical single objective Bayesian optimization setting, the
objective function f is assumed to be a realization of a Gaussian
process (GP) with mean function m and a positive definite
covariance kernel K, i.e., f � GPðm;KÞ.49,50 After k observed
function evaluations have taken place, the resulting data may
be denoted as Dk ¼ x1; y1ð Þ; . . . ; xk; ykð Þf g; we write Dkj j � k to
say that k observations comprise our data. The mean and
covariance functions are often defined to have certain free
parameters which are fit to the data Dk using strategies such
as maximum likelihood estimation (MLE, which was our strategy
of choice in this process). In all of our modeling, we assume our
GPs to have m � 0 and a square-exponential K with independent
length-scales in each dimension. A Tikhonov parameter is fixed
to be 10�3, primarily to ease ill-conditioning concerns.

An acquisition function is a utility function that measures
the value of sampling at different points within X , given what
data has already been observed. Acquisition functions balance
the trade-off between exploitation, suggesting input parameters
near where we have the best results so far, and exploration,
suggesting input parameter in regions where we have not tried out.
After k different input parameters have been tested, the kth surrogate
model can be created, which allows the formation of the acquisition
function, which is then maximized to determine the xk+1 input
parameter selection at which to run the fabrication process.

Modifications to Bayesian optimization

We describe our adaptation of Bayesian optimization to efficiently
search for input parameters which address eqn (1). The strategy
has some decisions unique to this scenario, but can be generalized
to an arbitrary number of objectives.

The first modification to note is that, unlike the traditional
sequential nature of Bayesian optimization, we chose to run 5
simultaneous fabrication processes. This allowed us to accelerate
the parameter search, which was valuable because the fabrication
process can take more than a couple hours. The specifics of this
parallel Bayesian optimization51 are explained later.

The strategy is derived from the e-constraint method.52 We
transform the multiobjective optimization problem eqn (1) to
three constrained scalar optimization problems:

max
x2X

TtotalðxÞ; s:t: HðxÞ � Ĥ and yoðxÞ 	 ŷo; (3a)

min
x2X

HðxÞ; s:t: TtotalðxÞ 	 T̂ total and yoðxÞ 	 ŷo; (3b)

max
x2X

yoðxÞ; s:t: TtotalðxÞ 	 T̂ total and HðxÞ � Ĥ; (3c)

where T̂total, Ĥ and ŷo are pre-defined thresholds. These quantities
define viability for this experimental setting – we only consider
parameter choices x to be viable if all three constraints are
satisfied, i.e.,

Ttotal(x) Z T̂total, H(x) r Ĥ, and yo(x) Z ŷo (4)

For the parameter search conducted here, T̂total = 88.5%,
Ĥ = 1.1%, and ŷo = 601.
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Another modification to the standard Bayesian optimization
methodology accounts for the physical limitations in the precision
of executing a proposed fabrication strategy. The parameters
defining X are fundamentally continuous (e.g., the etching time
can be any positive real number), but the actual tooling
and machinery used in the fabrication process have limited
precision and small changes in the input parameters do not
result in quantifiable differences in the created structure. As a
result, the actual domain under analysis is a discrete domain
designed to account for a minimum difference (distance in
parameter space) between proposed fabrication strategies. That
space is:

 CHF3 flow rate: {0, 5,. . .,80} sccm,

 Ar flow rate: {0, 5,. . .,100} sccm,

 O2 flow rate: {0, 5,. . .,100} sccm,

 CF4 flow rate: {0, 5,. . .,80} sccm,

 SF6 flow rate: {0, 5,. . .,80} sccm,

 Etching time: {0, 60,. . .,5400} seconds,

 Power: {20, 30,. . .,300} watts,

 Pressure: {50, 100,. . .,250} mTorr,

 SiO2 deposition time: {8, 10,. . .500} seconds.
The substrate fabrication process described above is time-

consuming, which necessitates an effective experimental design
so as to quickly search the space X for input parameters which
perform well for all three objective functions. The entire
9-dimensional space consists of over 7 � 1012 experiments.
Each single experiment can take 2–3 hours to complete, in
addition to requiring the use of various resources, which makes
it practically impossible to search through whole space to find
the optimum values.

Because the circumstances of eqn (3) are more complicated
than a standard Bayesian optimization setting, we require more
complicated models and a modified acquisition function.
We adapt methods from constrained Bayesian optimization
literature.53 After k fabrications have been conducted, the
available data for each of the objectives, denoted DT ;k, DH;k

and Dy;k, allows us to create Gaussian process models sT,k, sH,k

and sy,k for the transmission, haze and contact angles, respectively.
These are modeled independently, though in future work we could
consider a joint model. For conciseness, we will represent the
accumulation of all three data objects with a single symbol, Dk.

Using these models, an acquisition function is defined
for each component of eqn (3). This acquisition function is
modified from the expected parallel improvement54 to account
for the desire for viability. Considering, at first, only the solution
to eqn (3a), imposing the viability requires us to consider not
only the distribution of t B sT,k(x) (a Gaussian distribution), but
the joint distribution t, h, z B sT,k(x), sH,k(x), sy,k(x), more
succinctly denoted by t, h, z B sk(x). The acquisition function
(without parallel suggestions) would be defined as

aT,k(x) = Et,h,z B sk(x)[(t � t̃k)+ Ih o Ĥ-z 4 ŷo
], (5)

where t̃k is the highest Ttotal value observed thus far, (x)+

denotes max(x,0), and In = 1 if the condition n is satisfied and
0 otherwise (the indicator function). This is semantically

equivalent to maximizing the expected improvement attainable
for viable points; points which do not satisfy our thresholds
contribute zero improvement.

To account for the desire for 5 parallel suggested para-
meters, we expand on the base structure of eqn (5). We further
expand our notation by using xk,c to denote the cth of 5 points
to be simultaneously tested, xk;1; . . . ; xk;5 2 X , given the data Dk

which has already been accumulated. Distributions of the t, h, z
values at each of these 5 points is denoted with the shorthand
notation

t; h; z � skðxÞ , t1; h1; z1; . . . ; t5; h5; z5;� sk xk;1
� �

; . . . ; sk xk;5
� �

:

This allows us to write the expected parallel improvement,
attenuated by viability, for transmission with c parallel
suggestions as

aT ;k;‘

xk;1

..

.

xk;‘

0
BBBB@

1
CCCCA ¼ Et;h;z�skðxÞ max

1�i�‘
ti � ~tkð ÞþIhi 4 Ĥ\zi 4 ŷo

� �
; (6a)

with analogous acquisition functions for the haze,

aH;k;‘

xk;1

..

.

xk;‘

0
BBBB@

1
CCCCA ¼ Et;h;z�skðxÞ max

1�i�‘
hi � ~hk

� �
þ
Iti 4 T̂ total\zi 4 ŷo

� �
;

(6b)

and oil contact angle,

ay;k;‘

xk;1

..

.

xk;‘

0
BBBB@

1
CCCCA ¼ Et;h;z�skðBÞ max

1�i�‘
yi � ~yk
� �

þ
Iti 4 T̂ total\hi o Ĥ

� �
:

(6c)

In lieu of a standard mechanism to merge these acquisition
functions, which does not exist in the literature, we executed
the following strategy. We identify the next points at which to
fabricate, xk,1 through xk,5, sequentially by randomly choosing
one of eqn (6a)–(6c) to optimize for each point. For example,
we could randomly choose to optimize for transmission with
xk,1, which means that we would maximize aT,k,1. After that, we
could choose to maximize eqn (6c), ay,k,2, with xk,1 fixed to find
xk,2; this process is repeated up to xk,5.

Our full strategy is explained in Algorithm 1. We explicitly
state the potential for initial data Dbi in the algorithm, but no
initial data is required. In the experiment we conducted, 79
previous fabrications comprised Dbi .

To prevent fabrication time being spent on suggested para-
meters x which we believe will perform poorly, we allow ourselves
the opportunity to immediately reject parameters. To record such
a failed suggestion for a given location x, we append the worst
values ever observed for Ttotal, H and yo, denoted TF, HF and yF, to
the current data; these values can be updated if worse values are
observed in the future. Other strategies, such as maintaining an
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explicit model of viability, could be used—this strategy is utilized
because it requires no additional modeling hyperparameters.

Algorithm 1 Our Three Objective Bayesian Optimization
1: input: pre-evaluated data Dbi , experiment budget b

2: Place a GP prior on f
3: Initialize Dk with Dbi , fabrication counter b with 0

4: while b o b do
5: Fit GP hyperparameters to Dk with MLE

6: for c = 1,. . .,5 do
7: Choose ak,c randomly from eqn (6a)–(6c)
8: Fit GP models in sk to Dk with MLE

9: Optimize ak,c with xk,1,. . .,xk,c�1 fixed to find x0

10: if x0 is deemed a failed suggestion then
11: Set Dk  Dk [ x0;TF;HF; yFð Þ
12: Repeat Fit and Optimize steps above
13: else
14: Set xk,c ’ x0

15: Simultaneously fabricate glass with xk,1,. . .,xk,5

16: Measure Ttotal, H, yo for each fabrication
17: Set Dk  Dk [ xk;1;Ttotal;H; yo

� �
; . . . ; xk;‘;Ttotal;H; yo

� �� 	
18: Set b ’ b + 5
19: return All results in Dk on the Pareto frontier of eqn (1)

In practice, the acquisition functions are estimated through
4000 Monte Carlo iterations, utilizing our ability to independenty
draw from the Gaussian distributions sT,k(x), sH,k(x), sy,k(x); the
probability of viability only impacts eqn (6a)–(6c) implicitly through
the indicator function, and thus no explicit model of viability
probability is required. We used the CMA-ES55 optimization strategy
(adapted to the aforementioned discrete parameter domain) to
maximize all acquisition functions; the evolutionary population is
25, with 100 full iterations and 10 uniform random restarts.

Fig. 2 depicts the Bayesian optimization process in a sample
problem reduced to one dimension for ease of understanding.
In the first row, 6 locations have already been sampled of the
three objectives. In the second row we demonstrate the Gaussian
process models that have been built, and the resulting predictions.
In the third row, we show the acquisition functions eqn (6a)–(6c)
and the maximum of each; for graphing simplicity we omit the
parallel suggestion aspect and plot only aT,6,1, aH,6,1 and ay,6,1. We
also show the explicit probability of viability estimated through
Monte Carlo sampling (which is presented simply for display and
is not required to compute the acquisition functions). In the final
row, we show the Gaussian process models after being updated
with data sampled at the 3 suggested points, which would then be
used to generate 3 new points at which to sample.

Results and discussion

Fig. 3 plots a summary of the experimental design and Bayesian
optimization process. Sixty four experimental runs were conducted
in total, of which four were immediately reported as failures as

described in Algorithm 1. The left component of Fig. 3 shows the
three 2D plots depicting the objective values observed during
the Bayesian optimization. In the optimization of the photon
management properties (direct transmission vs. haze), only a
single process condition or structure was determined to be
Pareto efficient (the blue star). This indicates that the total
transmission and haze are strongly correlated.36

As a baseline, smooth glass has 93.5% transmission and
1.5% haze at 550 nm wavelength. After our experimental runs,
the transparency increased to 97.0% while the haze value was
reduced to 0.1% while improving oil contact angle beyond 1501.
In total, five sets of input parameters were identified which are
considered viable (satisfy the stated constraints) and Pareto
efficient. The trade-off between the objectives is depicted in the
rightmost graph of Fig. 3.

Characterizing the nanostructured glass properties

We further characterize the optimally performing nanostructured
glass identified from our parameter search. We focus on char-
acterizing the nanostructured glass associated with the blue star

Fig. 2 Sample depiction of our proposed Bayesian optimization process;
each column represents one of the three output parameters under
consideration. These are artificial profiles in one dimension for explanatory
purposes only. First row: The ‘‘true’’ output parameter to be optimized.
Second row: Statistical models built from the observed data. Third row: The
probability of an input parameter being viable (satisfying the constraints for
the other two output parameters) and the associated acquisition function
values along with the points which maximize that acquisition function
(without any parallel considerations). Fourth row: The new observations
achieved by sampling at the ‘‘next test parameters’’ and the new models
which result from this new data.
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in Fig. 3 which has the best optical properties compared with
other Pareto efficient datapoints. This specific sample with high-
est transmission and lowest haze was etched by CHF3, SF6, and Ar
at 10, 5, and 100 sccm flow rates, respectively. The flow rates for
both the CF4 and O2 were 0 sccm. The total pressure of the
chamber was maintained at 250 mTorr, and the power was set at
120 W. The etch and PECVD times were 2940 and 12 seconds,
respectively.

Fig. 4(a) shows a scanning electron microscopy (SEM) images
of the sub-wavelength, re-entrant structure. Fig. 4(a)(i) shows
201 tilted SEM image and Fig. 4(a)(ii) and (iii) show cross
sectional SEM images with different magnifications. The height
of the pillars are approximately 100–500 nm and the distance
between the pillars are between 20–100 nm. The diameter of the

pillars are between 30–40 nm at the tops and 10–20 nm at the
bottoms. The randomness in the height and spacing provide for
broadband and omnidirectional antireflection like the glasswing
butterfly wings.3 Furthermore, this randomness also provides for
robustness against abrasion as will be discussed later. By depositing
the SiO2, the surface area at the top of the pillars increase which
provide the re-entrant structures required for omniphobicity.

To investigate the omniphobic property, we deposited drops
of different liquids with different surface tensions, from water
(72.8 mN m�1) to ethylene glycol (47.7 mN m�1), on both bare
and nanostructured substrates. The volumes of the droplets
were 5 ml. Three measurements were made for each sample and
the mean and standard deviation for each sample are reported.
Fig. 4(b)(i) shows the static contact angle of a variety of liquids

Fig. 3 Depictions of the experimental design driven by our Bayesian optimization methodology. Left: Three 2D feasible region plots of the three
objectives under consideration. Right: Radar plot of the 5 viable efficient outcomes identified during the parameter search (plot qualitatively exaggerated
to account for the different scales of the three objectives).

Fig. 4 (a) (i) Shows 201 tilted, (ii) and (iii) cross sectional SEM images of fabricated glass with different magnifications. (b) Droplets of different liquids on (i)
normal and (ii) our superomniphobic glass. (c) (i) Transmission and (ii) haze plots as a function of wavelength for bare, single side and double side etched
glass. (d) Angle-resolved spectra for reflection at 550 nm wavelength for bare, single side and double side etched glass.
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on top of normal glass. The bare fused silica has 42.9 � 1.11
and 18.7 � 0.71 contact angle for water and oil, respectively,
with 35.5 � 2.71 hysteresis value for water. The hysteresis value
for oil is not measurable, because it is very close to the contact
angle. By creating re-entrant structure on the bare fused silica,
the water and oil contact angles increase significantly to 162.1�
2.01 and 155.2 � 2.21 with 3.2 � 0.71 and 9.4 � 3.61 hysteresis,
respectively (Fig. 4(b)(ii)). The contact angle for milk, coffee,
blood, cranberry juice, orange juice, and water are all more than
158.0 � 3.01 with hysteresis less than 8.0 � 2.01. Also, as shown
in Fig. 4(b)(ii), the transparency of the nanostructured glass is
high with no observable reflection and the text beneath the
substrate is clearly visible.

Fig. 4(c)(i) and (ii) show the total transmission and haze results
for glass as a function of wavelength. As shown in Fig. 4(c)(i), the
total transmission for bare fused silica is 93.5% and increases
to 97.0% at 550 nm. The transmission spectra for both the
bare glass and single-side nanostructured glass are fairly flat
across the entire range of 280 to 1000 nm wavelength. The total
transmission for the bare glass is between 93.1% to 94.0%, and
the total transmission for the nanostructured glass is between
95.9% to 97.1%. The same nanostructures were also created
on both sides of the glass and the total transmission of the
double-side nanostructured glass at 550 nm is 99.5%. The
transmission spectra for the double-sided glass is also fairly
flat with total transmission between 98.1% to 99.9%. The
corresponding values for haze are shown in Fig. 4(c)(ii). In both
single-side and double-side nanostructured glass, the haze value
reduces to less than 0.1% across a broadband range of wave-
lengths. For normal glass the haze value is between 2.2% and
0.9%; however, for nanostructured glass the haze value is fairly
flat for the spectrum.

Angle-resolved spectra of specular reflection was recorded at
550 nm wavelength. Fig. 4(d) shows the angle dependent specular
reflection for normal glass, single side, and double side nano-
structured glass. All the values of reflection for etched glass are
less than 5% for both single side and double side etched glass
up to 451. However the reflection values are always less than glass
even for a high incidence angle of 701, which reveals the high
omnidirectional, antireflective performance of our fabricated glass.

Characterizing the nanostructured glass functionality

We characterized the water-repellency of the nanostructured
glass when exposed to fog. The nucleation of small droplets in the
structure may destroy the superhydrophobicity of the surface.56

However, nanostructured texturing as well as reentrant structures
may provide for efficient antifogging by preventing nucleating
droplets from growing within the structure and transition to a
Wenzel state of wetting.7,8 To produce condensation, we dispense
water at an elevated temperature TL compared to a constant
surface temperature TS. Water evaporates and condenses on the
surface. By increasing the difference between the temperature of
the water and surface (DT = TL � TS, where TL and TS are the
temperature of liquid and surface, respectively), the amount of
condensation increases. Fig. 5(a) shows water jets dispensed with
different DT on our nanostructured glass (the rate of dispense
estimated as 20 ml min�1) (Video S1, ESI†). The results shows
that by increasing the DT, when the jet reaches the sample, the
wetting area increases (Fig. 5(a)(i)) and a number of small water
nuclei form (Fig. 5(a)(ii)). However, even with DT = 70, the surface
retains its super-repellency of water as the droplet can move
easily by blowing it off, even without tilting the sample (Video S2
in ESI†). The small water nuclei retain their spherical shape even
as they evaporate and easily roll along the surface even at the

Fig. 5 (a) (i) Water jet behaviour as a function of temperature DT. (a) (ii) Water contact angle at different DT on antifogging glass. Condensation versus
time optical images of (b) (i) normal glass and (b) (ii) antifogging glass. (c) Optical image of (i) normal and (ii) antifogging glass after 45 min of condensation.
(d) (i) Plot of percentage of droplets dropping after coalescence versus time. (c) (ii) Relationship of percentage of coalescences droplets jumping and
radius of the droplet at the moment of dropping off.
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minimum observable diameter of 5 � 1.0 mm. The corres-
ponding breakthrough pressure associated with this diameter
is 30 � 6.0 kPa.27

We also characterized the antifogging properties of nano-
structured glass by placing the samples in high relative humidity
conditions of 80%. The choice of 80% humidity was based on the
high condensation rate in this humid environment. Fig. 5(b)(i)
and (ii) show the evolution of fog formation on normal and our
nanostructured glass, respectively. In a short time, high density
micro-droplets nucleate on both substrates. The difference between
normal and antifogging glass, however, becomes apparent after few
minutes. While the nucleated droplets grow and coalescence on the
normal glass, without falling off of the substrate, the water droplets
on the antifogging glass merge together fast and they fall off of the
substrate, which provide new nucleation sites for new droplets. This
process continues for the whole recorded time (Video S3 in ESI†).
The optical images of normal glass and antifogging glass after 45
min condensation are shown in Fig. 5(c)(i) and (ii), respectively.

To quantify the antifogging efficiency, we measured the
proportion N of drops falling off the glass after coalescence.7

After approximately 5000 coalescence events, N versus time is
plotted in Fig. 5(d)(i) by counting the jumping droplets in one
minute. For the normal glass, N is essentially zero for all time
because no droplets fall off after coalescence. However, for the
nanostructured glass, more than 90% of the coalesced droplets
drop off the surface when the size of droplets becomes large enough.
The antifogging properties of our nanostructured glass is compar-
able with the reported values for nanocones with remarkable
antifogging abilities.7 Fig. 5(d)(ii) shows N as a function of droplet
radius at the moment of their falling off. The droplets start to jump
as soon as their size is as small as 2 mm. The percentage of jumping

droplets increase with size of droplet and 99% of droplets above
12 mm jump of the sample. Almost all of the droplets (N E 99%)
with larger size have jumped out of the substrate.

The mechanical durability of our glass surface comes from
two features: its randomness and self-similar structure and
ability to self-heal. A Taber Linear Abraser (model 5750) with
weighted SCOTCHBRITE abrasive pad was used for abrasion of
the samples on a constant surface area of 4 � 10�4 m2. Fig. 6(a)(i)
shows the behavior of water and ethylene glycol contact angle
during repeated abrasion cycles with pressure of 1225 N m�2. For
both water and oil, the contact angles decrease to less than 901
after approximately 400 cycles of abrasion. However, the mobility
of fluorine molecules provides a path for self-healing, similar to
that of epitucular wax in plant cuticles.57 Fig. 6(a)(ii) shows how the
water and oil contact angle increase after a heat treatment at 95 1C.
After only 15 minutes of heating, the contact angles for both
liquids recover. Fig. 6(b)(i) and (ii) show SEM images of tilted and
overhead view of the interface between abraded and non-abraded
areas of the sample after 500 cycles of abrasion with 1225 N m�2 of
pressure. The height of the nanostructures decrease, but their
reentrant shape is similar to the structure before the abrasion. The
randomness of the structures and self-similarity are such that
abraded surfaces are similar in texture to the non-abraded sur-
faces. Fig. 6(b)(iii) and (iv) show the uniformity of the structures
over a wide area for non-abraded and abraded samples.

Conclusion

In conclusion, we report superomniophobic, high transmission
re-entrant nanostructured glass substrates created using a Bayesian

Fig. 6 (a) Water and oil contact angle versus (i) abrasion cycle and (ii) after heating the abraded samples. (b) Shows SEM images of (i) 201 tilted and (ii)
overhead view of abraded and non-abraded structure with wider view of (iii) non-abraded and (iv) abraded area.
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optimization based experimental design process. The antireflective,
superomniphobic glass showed 97.0% and 99.5% total transparency
at 550 nm wavelength, for single side and double side nano-
structured glass, respectively. In addition, static water and ethylene
glycol contact angles of 162.1 � 2.01 and 155.2 � 2.21 for fused
silica glass have been achieved. The hysteresis for these liquids on
glass are 3.2 � 0.71 and 9.4 � 3.61, respectively. Also, the super-
omniphobic glass can recover its characteristics and heal itself
after abrasion through a brief period of heating. The nano-
structured glass showed N E 99% antifogging efficiency for
broad range of water condensation droplets. In using Bayesian
optimization, we explored a complex input parameter space
with competing goals to identify and fabricate multifunctional
substrates with a very small number of experiments. These
substrates can be used in large variety of optoelectronic applications.
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